Regulation of Thermal Conductivity in Hot Galaxy Clusters by Mhd Turbulence
نویسندگان
چکیده
The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter, we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population. Subject headings: cooling flows — galaxies: clusters: general — magnetic fields — MHD— instabilities — turbulence
منابع مشابه
Models of Galaxy Clusters with Thermal Conduction
We present a simple model of hot gas in galaxy clusters, assuming hydrostatic equilibrium and energy balance between radiative cooling and thermal conduction. For five clusters, A1795, A1835, A2199, A2390 and RXJ1347.5-1145, the model gives a good description of the observed radial profiles of electron density and temperature, provided we take the thermal conductivity κ to be about 30% of the S...
متن کاملThermal Conduction in Magnetized Turbulent Gas
Using numerical methods, we systematically study in the framework of ideal MHD the effect of magnetic fields on heat transfer within a turbulent gas. We measure the rates of passive scalar diffusion within magnetized fluids and make the comparisons a) between MHD and hydro simulations, b) between different MHD runs with different values of the external magnetic field (up to the energy equiparti...
متن کاملHigh energy emission from galaxy clusters and particle acceleration due to MHD turbulence
In the next years the FERMI gamma ray telescope and the Cherenkov telescopes will put very stringent constraints to models of gamma ray emission from galaxy clusters providing crucial information on relativistic particles in the inter-galactic-medium. We derive the broad band non-thermal spectrum of galaxy clusters in the context of general calculations in which relativistic particles (protons ...
متن کاملAnisotropic Thermal Conduction and the Cooling Flow Problem in Galaxy Clusters
We examine the long-standing cooling flow problem in galaxy clusters with 3D MHD simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of ∼ 200 Myr or shorter—in order to prevent a cooling catastrophe the ICMmust be heated by some mechanism such ...
متن کاملDivergence of neighboring magnetic-field lines and fast-particle diffusion in strong magnetohydrodynamic turbulence, with application to thermal conduction in galaxy clusters.
Using direct numerical simulations, we calculate the rate of divergence of neighboring magnetic-field lines in different types of strong magnetohydrodynamic turbulence. In the static-magnetic-field approximation, our results imply that tangled magnetic fields in galaxy clusters reduce the electron diffusion coefficient and thermal conductivity by a factor of approximately 5-10, relative to thei...
متن کامل